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ABSTRACT
Controller Area Network (CAN) is the de-facto standard in-vehicle
network system. Despite its wide adoption by automobile manufac-
turers, the lack of security design makes it vulnerable to attacks. For
instance, broadcasting packets without authentication allows the
impersonation of electronic control units (ECUs). Prior mitigations,
such as message authentication or intrusion detection systems, fail
to address the compatibility requirement with legacy ECUs, stealthy
and sporadic malicious messaging, or guaranteed attack detection.
We propose a novel authentication system called ShadowAuth that
overcomes the aforementioned challenges by offering backward-
compatible packet authentication to ECUs without requiring ECU
firmware source code. Specifically, our authentication scheme pro-
vides transparent CAN packet authentication without modifying
existing CAN packet definitions (e.g., J1939) via automatic ECU
firmware instrumentation technique to locate CAN packet trans-
mission code, and instrument authentication code based on the
CAN packet behavioral transmission patterns. ShadowAuth en-
ables vehicles to detect state-of-the-art CAN attacks, such as bus-
off and packet injection, responsively within 60ms without false
positives. ShadowAuth provides a sound and deployable solution
for real-world ECUs.
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1 INTRODUCTION
Modern vehicles use the Control Area Network (CAN) protocol to
operate electronic control units (ECUs). Those ECUs are respon-
sible for controlling driving operations, such as engine and brake
controllers [17], and sharing vehicle status (e.g., driving speed)
among in-vehicle devices [34]. The CAN standard was originally
designed without security in mind. For this reason, it lacks authenti-
cation during the communications between ECUs. Therefore, if any
ECU is compromised, the entire CAN bus is subject to attacks, as
shown in previous works where attackers compromise ECUs over
an Internet connection [16], Bluetooth [61], and phone calls [64].
Compromised ECUs can cause vehicle malfunctions by falsifying
the car status data (e.g., revolutions per minute (RPM)), imperson-
ating other ECUs (e.g., engine, transmission, and brake control),
potentially leading to the lost control of a vehicle [34].

Although attacks often start from external inputs, the ECUs
without direct external inputs are not exceptions from potential
attacks. Typically, safety-critical ECUs, such as the ones for engines,
transmission, and brakes, are not directly accessible from external
input interfaces (such as Bluetooth). However, attackers can still
reach them indirectly after compromising other connected ECUs.
As a result, an attack launched from non-safety-critical ECUs can
eventually impersonate [16, 34, 61] safety-critical ECUs to inject
malicious CAN packets or suppress [7, 50] safety-critical ECUs from
sending the CAN packets.
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The root cause of CAN insecurity is its inability to reject ma-
licious CAN packets. Mitigating such malicious packets requires
identifying the sender of each packet and verifying whether it is
an expected sender. Message authentication code (MAC) is one
approach to authenticate CAN packets. Specifically, MAC protects
benign ECUs from impersonation attacks by simply ignoring the
CAN packets with invalid credentials, as proposed in the previous
works [4, 14, 18, 21, 22, 30, 36, 43, 46, 47, 56–58].

However, there are currently two challenges deterringwide adop-
tion of MAC into CAN packets: the incompatibility with (1) the
existing CAN packet definitions (e.g., SAE’s J1939 [26] or manu-
facturer definitions [28]) and (2) the real-time constraint of vehicle
operations due to high latency of packet acceptance. These incom-
patibilities mandate redesign of every firmware to adopt MAC.
Unfortunately, the number of ECUs in each vehicle ranges from
thirty to hundreds produced by third-party vendors in multiple
tiers [15]. It is prohibitively infeasible for every vendor to roll out
new firmware, implying numerous administrative challenges and
compliance efforts. In addition, such a redesign requires a signifi-
cant coordination effort among different vendors to ensure inter-
operability among different ECUs.

To overcome the aforementioned challenges, we propose Shad-
owAuth, a novel CAN authentication framework to support backward-
compatible packet authentication, using automatic ECU binary
firmware instrumentation. ShadowAuth has three novel features:
(1) enabling message authentication in a way that is backward-
compatible with the existing CAN packet definitions, (2) auto-
matically embedding authentication functionality into the binary
firmware without requiring source code, and (3) adhering to the
real-time constraint of vehicle operations.

To automatically embed authentication functionality into ECU
firmware, ShadowAuth locates CAN packet transmission functions
using both static and dynamic analysis guided by their packet
transmission behavioral patterns through a CAN peripheral device
(i.e., inspecting instructions to control a CAN peripheral device).

Furthermore, we propose a new MAC scheme to provide full
compatibility with (1) legacy packet definitions and the CAN stan-
dard and (2) real-time constraints. Our scheme introduces only one
extra packet type called “authentication packet” without modifying
the legacy “operational packet” (e.g., a brake control packet). Such
an authentication packet is used to authenticate each operational
packet. Specifically, our scheme authenticates operational pack-
ets paired with the corresponding authentication packets based
on an “accept-first-authenticate-later” policy, which prioritizes the
acceptance of each operational packet first to comply with the real-
time constraints of vehicle control operations without deferring
the process of operational packets.

We applied ShadowAuth to three different ARM-based ECUs
supporting a wide range of real-world automotive vendors, such
as BMW, Chevrolet, and Ford. Our evaluation results show that
ShadowAuth successfully implants authentication functions into
the existing ECU firmware without requiring any source code or
prior knowledge of the firmware. Furthermore, ShadowAuth shows
an effective detection of impersonation and bus-off attacks within
60ms in the worst case without any false positives. We believe
our backward-compatible design makes ShadowAuth practical and

ID
(11 bits)


Data

(0-64 bits)

R
T
R

I
D
E


S
O
F


S
R
R


R
0


Data Length Code
(4 bits)


C
R
C


A
C
K

E
O
F


I
F
S


(a) Standard Format
ID-A

(11 bits)


R
T
R

I
D
E


R
1


S
O
F


S
R
R


I
D
E


ID-B
(18 bits)


R
0


Data

(0-64 bits)

Data Length Code
(4 bits)


C
R
C


A
C
K

E
O
F


I
F
S
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Figure 1: CAN Data Frame Description

deployable for existing vehicle hardware without any redesign of
the existing CAN packet definitions.

In summary, the main contributions of this paper are the follow-
ing:

• We propose ShadowAuth, a fully backward-compatible, real-
time, and low-overhead authentication scheme for CAN bus.

• We design an automatic and architecture-agnostic method
to implant an authentication function into existing ECU
firmware via binary instrumentation.

• Our evaluation shows that ShadowAuth can mitigate intrin-
sic vulnerabilities of CAN, such as the bus-off attacks within
60ms with 100% accuracy.

Our code is available at https://github.com/purseclab/ShadowAuth.
The remainder of this paper is organized as follows: Section 2 ex-

plains the background; Section 3 defines the threat and trust model;
Section 4 presents the design of ShadowAuth; Section 5 shows
the detailed implementation of ShadowAuth; Section 6 presents
our evaluation result; Section 7 discusses observations from our
evaluation, current limitations, and future directions of this work;
Section 8 discusses related works, and Section 9 concludes the
paper.

2 BACKGROUND
2.1 Control Area Network
CAN data frame. A CAN data frame consists of CAN fields, as
shown in Figure 1. ECU firmware is responsible for writing the ID,
Data, and DLC fields. The others are updated by the CAN peripheral
device attached to the ECU board. The ID field (or CAN ID) indicates
the type of content of the data field. A single ECU can send multiple
CAN IDs, and the same CAN ID can be shared by multiple ECUs.
The DLC field represents the length of Data. The Data field contains
vehicle status information. Specifically, each offset of this field
contains the value of different vehicle status, such as the speed
of a wheel, the fuel level, or the degree of acceleration. Further,
this field can be encoded in various formats. Manufacturers can
use open standards (e.g., J1939 [26]) or make their own definitions
(e.g., Volkswagen transport protocol [28]) to indicate which ID
field describes which Data field, the offsets, and the lengths to
describe status values. The descriptions of other fields can be found
in [29]. In this paper, we will use CAN data frame and CAN packet
interchangeably.
Bus topology. CAN uses a bus topology that does not distinguish
between the sender nodes and the receiver nodes. In this network,
a node in the CAN bus broadcasts its packets to all nodes, including
the sender itself. This topology has the advantage of reducing the
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frame size because frames do not have to contain the sender’s
and receiver’s information. Every receiver node receives every
packet regardless of relevance. As discussed before, this simple
design allows impersonation attacks due to missing authentication
of senders and receivers.
Priority control. The CAN bus arbitrates simultaneous accesses
by prioritizing CAN frames using the ID field. When two or more
ECUs attempt to send packets together, the packet with a lower
ID number has a higher priority over the others. However, if their
IDs are the same and the packets conflict in other fields (e.g., data
field), one ECU perceives that the CAN bus reads a different bit
to its transmission. In this case, the ECU stop sending the frame
and start to transmit an error frame. In such a manner, the CAN
standard prevents the simultaneous transmission of the same CAN
ID number.
Error handling.When two or more ECUs try to send CAN frames
simultaneously, their frames will collide, and an error happens. If an
ECU continuously generates errors (e.g., frame collision) in a short
time, the node detaches itself from the CAN bus to protect the bus
and other nodes. Each ECU has an error counter which increases
whenever the node encounters errors. It has two error counters:
Transmit Error Counter (TEC) and Receive Error Counter (REC).
The TEC increases when an ECU fails to transmit its frame, and
the REC increases when an ECU fails to receive any frame. Both
counters decrease when ECUs succeed in sending and receiving
a frame. These changes in the counter value cause an ECU state
transition.

Specifically, the default state of an ECU is the error active state
if an ECU’s TEC and REC are less than 128. In this state, an ECU
sends an active error frame when it fails to transmit frames. In
particular, an active error frame starts with six dominant sequential
bits (000000(2) ). Those bits prevent other ECUs from finishing a
frame transmission, causing other ECUs to retransmit frames.

If either TEC or REC becomes greater than or equal to 128 but
less than 256, an ECU changes its state to the error passive state,
where an ECU sends a passive error frame when this ECU fails to
transmit frames instead of an active error frame. Since the passive
error frame starts with six sequential recessive bits (111111(2) ),
all the other ECUs are not aware of the errors due to the analog
features in the CAN bus [50]. Unlike an active error frame, a passive
error frame does not cause other ECUs to retransmit frames.

An ECU changes its state to the bus-off state if an ECU’s TEC
or REC reaches 256. In the bus-off state, ECUs detach themselves
from the CAN bus and stop transmitting or receiving frames. By
exploiting the aforementioned feature, a compromised ECU can
deliberately trigger packet collision on the CAN bus, eventually
forcing a victim ECU to switch to the bus-off state [7, 50].

2.2 Electronic Control Unit
Safety-critical ECU. For the safety of drivers, passengers, and
pedestrians, many countries, including the United States, man-
date vehicle manufacturers to apply ECUs to safety features such
as Anti-lock Brake System (ABS) and Electronic Stability Control
(ESC) (a.k.a. Electronic Stability Program (ESP)). These ECUs help
drivers control vehicles in hazardous situations. For instance, ABS
repetitively applies and releases brakes more than ten times per

Requirements

Approach New Packet
Definition Delay in Delivery (Time) New H/W

CANAuth [22] ✓ ✓(N/A)
Nilsson et al. [41] ✓ ✓(N/A)
LCAP [21] ✓ ✓(N/A) ✓
TOUCAN [4] ✓ ✓(5.79𝜇s)
VeCure [58] ✓ ✓(50𝜇s)
CaCAN [36] ✓ ✓(2.2-3.2𝜇s) ✓
SECU [57] ✓
LiBrA-CAN [18] ✓
S2CAN [46] ✓ ✓(75𝜇s)
MAuth-CAN [30] ✓(500𝜇s)
LiEA [47] ✓(N/A)
HLPSL [14] ✓(N/A) ✓
vatiCAN [43] ✓(3300𝜇s)
VulCAN [56] ✓(201𝜇s) ✓
ShadowAuth

Table 1: Comparison of Previous MAC Approaches

second to wheels with different pressures to protect vehicles from
skidding on a road. ESC detects the driver’s intent by collecting
sensor values such as the location of a steering wheel, a wheel
speed, and a vehicle gradient. If the driver’s intent is different from
the vehicle’s status, ESC stabilizes the vehicle by controlling the
engine power and brake pressures.
Memory Mapped Input Output. MMIO is the medium to com-
municate with peripheral devices attached to the board. Specifically,
ECU firmware communicates with peripheral devices by accessing
the MMIO addresses of an attached peripheral device with mem-
ory read and write instructions [32] (e.g., LDR and STR for ARM).
Through these instructions, the CAN bus peripheral devices such as
TLE8888, SN65HVD232, and MCP2517 interpret digital and analog
signal.

2.3 Hash-based Message Authentication Code
Hash-based Message Authentication Code (HMAC) guarantees
packet integrity using a cryptographic hash function. In this paper,
we use a hash scheme based on a Pre-Shared Key (PSK) to authen-
ticate packets. Specifically, the nodes sharing the same key and
sequence numbers can authenticate packets via validating whether
their senders are legitimate. As shown in Table 1, previous HMAC-
based approaches are not backward-compatible due to (1) their
requirements of packet format changes, (2) the violation of the
real-time constraint caused by HMAC computation upon packet
arrival, or (3) dependency of new hardware.

3 THREAT MODEL
We assume impersonation attacks through CAN bus communica-
tion from not safety-critical ECUs (e.g., infotainment unit) with a
prior compromise as adversaries. The malicious packets can imitate
and suppress the functionalities of ECUs [7, 50], such as wheels,
airbags, or brakes, as well as launching “replay” attacks where an
attacker can replay packets observed from a CAN bus as demon-
strated in prior works [34].

Our work introduces an ECU application monitoring the CAN
bus and processing authentication. The integrity of this ECU is
assumed, as well as the firmware update capability of ECUs. Mean-
while, we do not consider any physical access to the protected
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vehicle or direct access to the CAN bus from an attacker (e.g.,
hardware attack). Also, we do not consider attacks that happen
at the start of vehicles because they are easily noticeable by dri-
vers. Furthermore, attacks against ECU firmware update is out of
scope [23, 37, 38]. Also, ShadowAuth targets ECU manufacturers
who have legal permission to modify the firmware running in the
devices they produce. This threat model aligns with the typical
ones used in the previous CAN security research [7–9, 33, 50].

As an example scenario, a driver accidentally clicks a phishing
website in her vehicle infotainment unit, leading to a compromise
of the system [16]. Consequently, an attacker gains the ability to
send any packet on the CAN bus. To incur a car accident, the at-
tacker impersonates a cruise control system’s packets to increase
the driving speed drastically. Unfortunately, the driver cannot im-
mediately reduce her car’s speed properly because the attacker
prevents an ESC from sending and receiving packets through a
bus-off attack [7, 50]. While she immediately turned her steering
wheel, the ESC could not maintain the vehicle’s balance because
the CAN packets of the steering wheel’s location could not reach
the ESC, resulting in an accident.

4 DESIGN
There are three challenges to achieve authentication while main-
taining compatibility with legacy systems.
C1:Compatibilitywith existing packet definitions. Implement-
ing authentication requires extra information in CAN packets to
exchange authentication packets among ECUs. Trimming exist-
ing Data fields or appending additional fields for authentication
conflicts with the existing standards and causes incompatibility
with the CAN network used in the existing vehicles. For example,
J1939 [26] is a standardized CAN packet definition widely adapted
by heavy-duty vehicles. As J1939 defines all offsets and length of
the data in CAN packets, appending verification information to
some Data fields requires the modification of the packet definition
and all participating ECUs.
C2: Real-time constraint. Any extended delay in a CAN packet
delivery might cause a safety issue because it can slow down the
real-time response time of safety-critical functions such as engines
and brakes. Thus, any defense systems for CAN buses, including
authentication mechanisms or intrusion detection systems, should
be cautious about any delay of packets.
C3: Source code constraint. Source code dependency of securing
ECU solutions imposes more deployment challenges. A vehicle
consists of hardware and software components from a variety of
vendors [15], and the manufacturer might not have some code
access to ECU firmware. For instance, the absence of legacy build
tools, build tool features, third-party source code, or vendor support,
introduces the necessity of binary rewriting at post-compile and
link time [44, 62].

ShadowAuth has two phases of operations in an ECU’s life cycle,
as shown in Figure 2. In the firmware instrumentation phase, Shad-
owAuth implants packet authentication functions into firmware
using static and dynamic analyses. To this end, ShadowAuth con-
verts the ECU firmware into an intermediate representation (IR)
and finds the CAN transmission function based on common CAN

packet transmission behavior. ShadowAuth then generates trampo-
line code and rewrites the existing firmware (Section 4.1), enabling
ECUs to send authentication packets. When an impersonation at-
tack occurs, the packet verification in CAN Packet Authentication
(Section 4.2) will fail, and ShadowAuth considers the CAN bus
compromised and notifies a driver accordingly.

4.1 ECU Firmware Instrumentation
As the first step, ShadowAuth identifies CAN transmission func-
tions automatically through both static and dynamic analyses. Shad-
owAuth first uses static analysis for shortening the list of CAN trans-
mission function candidates through the following three heuristic
rules:

(1) ShadowAuth detects the functions that can potentially write
data into CAN peripheral devices. Firmware sets MMIO addresses
first and writes data into those addresses. Since many of such ad-
dresses cannot be determined statically, ShadowAuth conserva-
tively identifies functions that include instructions writing into
memory (e.g., str for the ARM architecture). (2) ShadowAuth fur-
ther chooses the functions whose total memorywriting size is larger
than 79 bits which are the minimum size to send a CAN packet,
including the ID field (whose size is either 11 bits or 29 bits), the
Data field (whose size is 64 bits), and lastly the DLC field (whose size
is 4 bits), as illustrated in Figure 1 and Section 2.1. (3) ShadowAuth
selects the functions with a basic block writing at least 64 bits of
data into the memory. A CAN transmission function should write
the content of the Data field to send CAN packets, which usually
happens in a single block in general.

To confirmwhether a candidate function actually generates CAN
packets at runtime, we use dynamic analysis and configure two
ECU boards for the CAN bus. The first one is running the target
ECU firmware to be protected. The other one is the CAN bus mon-
itor watching CAN packets. We set the breakpoints at the entry
address of each function candidate through the debugger module
attached to the target ECU board. The CAN bus monitor of Shad-
owAuth verifies whether the watched function indeed generates
CAN packets. Once a CAN packet is detected, the watched function
candidate is considered as a CAN packet transmission function.

Knowing all the CAN transmission functions, ShadowAuth in-
struments the ECU firmware via implanting the authentication
code into the identified CAN transmission functions. Specifically,
ShadowAuth uses the detour-based approach [5, 24, 48] to instru-
ment the authentication code into the existing ECU firmware. A
simplified example in Figure 3 illustrates the workflow. A call
instruction of the candidate function (i.e., send_packet) is at the
address 0x04 as shown on the left. This function is responsible for
sending “operational” packets (e.g., break control packets). Shad-
owAuth inserts a jump code right after this call to generate and
transmit “authentication” packets.

As shown in Figure 3, the add instruction at the address 0x8 is
replaced with a jmp instruction to redirect the control flow to the
trampoline code at 0x100. The trampoline code first executes the
original instruction overwritten by the jmp instruction. Then, it
generates an HMAC by calling calc_hmac and uses the identified
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Figure 2: Overview of ShadowAuth

// Legacy firmware example
...
0x04: call can_transmission
0x08: add r0 r1

0x12: cmp r0, #3

...


// Trampoline code
0x100: add r0 r1

0x104: push {r0-r12}

0x108: call calc_hmac;
0x112: call send_packet;
0x116: pop {r0-r12}

0x120: jmp 0x12
...


: Execution Flow

// Rewritten firmware example
...
0x04: call can_transmission
0x08: jmp 0x100

0x12: cmp r0, #3
...


// Variables

0x200: ecu_id
0x204: counter
...


// Functions

0x300: func calc_hmac:
...

0x304: func send_packet:
...


(1) Firmware rewriting

(3) Calculate HMAC
(2) Save the previous state

(4) Send an authentication packet
(5) Restore the previous state
(6) Return to the original code

Figure 3: Detour-based MAC Generation Code

CAN transmission function (i.e., send_packet) to send an authen-
tication packet. The trampoline then returns to the address 0x12 to
resume the original control flow.

4.2 CAN Packet Authentication
In this section, we introduce the packet authentication process
of ShadowAuth, which consists of the HMAC generator (embed-
ded in existing ECUs’ firmware, as described in Section 4.1) and
Authenticator, a monitoring ECU on the CAN bus, as presented in
Figure 2. Since the Authenticator is software, the manufacturers can
deploy it atop gateway ECUs [53], minimizing the real-world de-
ployment cost. After each unmodified previous operational packet
is sent by an ECU, the HMAC generator sends an authentication
packet to authenticate the operational packet on the CAN bus. This
asynchronous design of our authentication scheme using authen-
tication packets sends additional authentication packets after the
corresponding original operational packets, helping ShadowAuth
achieve compatibility with legacy systems (C1). To support this
design, our authentication scheme includes ECU ID, counter, ECU-
CAN ID map, and packet matching algorithm.
ECU ID. An ECU ID is assigned a unique identifier for each ECU,
only shared with the Authenticator. The Authenticator knows all
ECU IDs, but each ECU only knows its own ECU ID. Based on
its ECU ID, an ECU generates authentication packets to help the
Authenticator authenticate operational packets.
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Figure 4: Authentication Packet Definition

Counter. An ECU maintains a counter to prevent replay attacks.
Specifically, the counter starts from 0 and increases by 1 when an
ECU sends an authentication packet.When authentication succeeds,
the Authenticator synchronizes its counter per ECU.

This counter is reset to 0 when a vehicle restarts. This design
makes ShadowAuth compatible with real-world ECUs [25] because
many ECUs cannot store the counter value after a vehicle is turned
off due to a lack of persistent memory (e.g., flash memory).
ECU-CAN IDmap. An ECU-CAN ID map represents which ECUs
are allowed to send which CAN IDs. We can obtain this map by
leveraging the prior work [10, 35, 39]. Alternatively, ECU manu-
facturers can use their domain knowledge to find an ECU-CAN ID
map. After we assign an ECU ID to each ECU and obtain the list of
CAN IDs for each ECU, we build the ECU-CAN ID map and save it
within the Authenticator.
Authentication packet structure. Authentication packets are de-
fined using the standard and extended CAN frames, as shown in Fig-
ure 4. The CAN ID field consists of two sections, priority control
and anonymity control. To prioritize operational packets without
deterring their processing, we set the priority control field of
the authentication packets as the lowest priority (C2), minimizing
the real-time impact. Also, we randomize the anonymity control

5



ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan Kim, et al.

Operational ECU-CAN ID Possible Possible Counter
Packets Map Scenario ECU ID 𝑋 ECU ID 𝑌

𝑜1𝑜2

𝑋 − 𝑜1 𝑋𝑋 +2 +0
𝑌 − 𝑜1 𝑋𝑌 +1 +1
𝑋 − 𝑜2 𝑌𝑋 +1 +1
𝑌 − 𝑜2 𝑌𝑌 +0 +2

Table 2: Example of Scenarios for Two Operational Packets

field to randomize the sending order of two or more authentication
packets, resulting in unpredictable delays for each packet. This
design prevents replay and correleation attacks which we will de-
scribe in Section 4.3. Authentication packets store an HMAC in the
data field with length up to 64 bits.
Accept-first-authenticate-later policy. ShadowAuth follows an
asynchronous Accept-first-authenticate-later policy. Specifically, (1)
A sender ECU broadcasts an operational packet first followed by
a corresponding authentication packet. (2) A receiver ECU and
the Authenticator accept the operational packet and only the Au-
thenticator accepts the authentication packet. (3) the Authenticator
authenticates the operational packet with the authenticate packet
on behalf of the receiver ECU. (4) If authentication fails, the Au-
thenticator fires an alarm, indicating a potential attack detected.

This Accept-first-authenticate-later policy introduces the follow-
ing advantages: First, it does not change legacy CAN packet defini-
tions (C1). Second, this policy helps ECUs the real-time constraint
of ECU firmware by minimizing the workload of authentication
(C2). The HMAC generator sends authentication packets only after
the prioritized operational packets are sent. Meanwhile, there is
no extra overhead for receivers because a CAN peripheral device
(attached to an ECU board) filters authentication packets automati-
cally.
Authentication.Authentication succeeds if theAuthenticator finds
out the correct match between operational and authentication pack-
ets. Specifically, it calculates HMAC with an ECU ID and counter
from the ECU-CAN ID map with the same cryptographic hash
function as the HMAC generator. If the HMAC is identical to the
authentication packet, we call it is a “match” between two packets,
meaning that the operational packet is authentic.

Otherwise, the authentication fails if packets are not matched
after a certain time. In particular, we defined the timeout value, the
maximumwaiting time to bematched for each packet. Theoretically,
the longest waiting time occurs when all ECUs try to simultane-
ously send their operational packets. Since the CAN bus prioritizes
operational packets, the authentication packet should wait for the
number of ECUmultiplied by the time to send an operational packet
in the worst case. For instance, if a vehicle uses the J1939 standard
and one hundred ECUs, an authentication packet arrives at most
0.6×100𝑚𝑠 after. Thus, the Authenticator can guarantee all packets
will be matched within 60𝑚𝑠 unless attacks happen.
Packet match. To match packets, the Authenticator should infer
the correct sender ECU’s ID and counter. However, these are not
trivial because the ECU-CAN ID map might return one or more
ECU IDs for one CAN ID, and one ECU ID might have one or
more possible counters, causing multiple scenarios, as shown in
Table 2. For instance, if there are two operational packets (e.g., 𝑜1
and 𝑜2) and two ECUs (e.g., 𝑋 and 𝑌 ) are eligible to send them,
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Figure 6: Exact Matching Process

the Authenticator should consider four scenarios, generating three
possible counters(e.g., +2, +1, and +0) per ECU. Based on these
scenarios, the Authenticator temporarily pairs all possible packets
as shown in Figure 5. Each edge in Figure 6 represents a scenario
that could have happened. For example, the edge 𝑜1 −𝑎1 means the
sender ECU of 𝑜1 also could have sent 𝑎1.

Based on Algorithm 1, the Authenticator verifies which combi-
nation of those scenarios can happen simultaneously. Specifically,
the goal of Algorithm 1 is to find the vertex cover [6] of Figure 6.
For instance, 𝑜1 − 𝑎1 and 𝑜4 − 𝑎1 cannot happen together because
𝑎1 is overlapped. As shown in Algorithm 1, the arguments of the
authentication function are a set of operational and authentication
packets (𝑉𝑜 and 𝑉𝑎), all possible scenarios (𝐸), and a packet requir-
ing immediate authentication due to the timeout (𝑜𝑡 ). As described
in Line 2-3, it picks an operational and authentication packets (𝑜
and 𝑎) with the fewest adjacent nodes (𝑜1 and 𝑎1). If both nodes are
adjacent, the Authenticator temporarily pairs them by removing
both vertices from 𝑉𝑜 and 𝑉𝑎 (Line 5 and 10-13). Authentication
succeeds when the Authenticator succeeds in pairing the timeout
packet (Line 6-8). Otherwise, authentication fails when there is no
authentication packet corresponding to the timeout packet (Line
16-18).

4.3 Security Analysis
The design of ShadowAuth reflects the trade-off between security
and real-world deployment constraint. We analyze a number of
common attacks against CAN in the context of ShadowAuth, and
specific attacks towards ShadowAuth.
Packet injection. To calculate valid HMACs, both an ECU ID and
counter value are required as described in Section 4.2. Since the
ECU ID is stored on the ECU’s memory, extracting ECU ID requires
access to firmware (e.g., through the physical access or hijacking
firmware updates) which is out of the scope of our threat model, as
mentioned in Section 3. Consequently, attackers could not inject
valid operational packets without generating valid authentication
packets.
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Algorithm 1: Bipartite Packet Matching

Input:
𝑉𝑜 , // a set of operational packet
𝑉𝑎 , // a set of authentication packet
𝐸, // a set of edges in Figure 6
𝑜𝑡 // a packet requiring authentication
Output: True or False // True if authentication is successful

1 Function IsAuthenticated(𝐺,𝑜𝑡):
2 for 𝑜 ∈ 𝑉𝑜 do
3 for 𝑎 ∈ 𝑉𝑎 do
4 // Choose packets having less edges than others
5 if (𝑜, 𝑎) ∈ 𝐸 then
6 if 𝑜 == 𝑜𝑡 then
7 // If packet 𝑜𝑡 is authenticated by 𝑎
8 return True
9 end

10 // Temporary pairs 𝑜 with 𝑎

11 𝑉𝑜 = 𝑉𝑜 − 𝑜

12 𝑉𝑎 = 𝑉𝑎 − 𝑎

13 break
14 end
15 end
16 if 𝑜 ∈ 𝑉𝑜 then
17 // Even if temporal pairing fails
18 return False;
19 end
20 end

Replay attacks. As described in Section 4.2, when HMAC genera-
tor sends an authentication packet, the counter in the next authenti-
cation packet is increased. As a result, attacks naïvely replaying the
previously sent authentication packets will not be matched with
any of the hash values that the Authenticator has.

However, advanced replay attacks across driving sessions can
send both operational packets and their corresponding authentica-
tion packets to evade detection because the counter always starts
from 0, and the ECU ID is not changed. Theoretically, if the attacker
ECU can memorize all packets from the previous driving session
(e.g., using a permanent storage), it can replay all the valid authen-
tication packets. However, this attack mandates the two following
requirements: (1) identifying which packets are the victim ECU’s
authentication packets and (2) preventing the victim ECU from
sending any packets. Fortunately, satisfying both requirements is
non-trivial because the attacker ECU has to infer a victim ECU’s
ID unless the ECU-CAN ID map is known. Moreover, the attacker
ECU needs to launch a bus-off attack to stop the victim ECU from
sending any operational packets.
Brute-force attacks. The short length of HMAC is the culprit of
brute-force attacks, including finding collisions, enumerating all
authentication packets, and brute-forcing HMAC. We chose this
design as the trade-off between the security of HMAC and the de-
ployment requirement. For instance, each CAN data frame is 64
bits, and we decided to use only one data frame for authentica-
tion to minimize the potential impact on the CAN. Nevertheless,
ShadowAuth tolerates brute-force attacks. Furthermore, hash col-
lision attacks can be mitigated by various methods such as using

more data frames to pump up the 64-bit HMAC into 128-bit or even
more (with risk of overloading the CAN network) or leveraging
over-the-air ECU ID updates, as discussed in previous work [46].

Attackers can enumerate all HMACs to neutralize the authen-
tication process, exploiting that one of the HMACs is valid (a.k.a.
online brute-force attack). Fortunately, the Authenticator easily
detects this attack through the timeout mechanism. Specifically, all
authentication packets are supposed to bematchedwith operational
packets. However, almost all enumerated authentication packets
do not match with operational packets, leading to the timeout that
the Authenticator considers the attack presence as described in
Section 4.2

Additionally, the attacker can recover an ECU ID and a counter
from an HMAC by calculating possible HMACs with all the com-
binations of ECU IDs and counters (a.k.a. offline brute-force at-
tack). Nevertheless, ShadowAuth tolerates this attack because the
synchronization between the victim ECU’s and Authenticator’s
counter will be broken even if attackers manage to brute-force an
HMAC and inject malicious authentication packets. As mentioned
in Section 4.2, the ECU’s counter only increases when it sends an
authentication packet. Thus, if attackers impersonate a victim ECU
by sending an authentication packet with a valid HMAC, only the
Authenticator’s counter increases, which breaks the counter syn-
chronization. Eventually, the victim ECU’s authentication packets
will expire, leading to the authentication failure.
Bus-off attacks. Since the bus-off attacks also require packet injec-
tion, the Authenticator mitigates the attacks. To launch the attacks,
an attacker ECU deliberately and consistently makes packet colli-
sions with a victim ECU’s packets, transitioning the victim ECU
from the error active to error passive and bus-off state. Unfortunately,
the Authenticator cannot detect the attacks when the victim is in
the error active state because active error frames halt both ECU’s
transmission as described in Section 2. Nevertheless, if the victim
ECU reaches the error passive state, the attacker ECU becomes re-
sponsible for sending authentication packets because the victim
ECU’s passive error frames do not hinder the attacker’s packets any-
more. Still, the attacker ECU fails to send authentication packets
without the ECU-CAN ID map. Additionally, bus-off attacks cannot
target the Authenticator because it does not send any CAN frame
to the bus.
ECU-CAN ID map recovery. Since the ECU-CAN ID map is
stored in the Authenticator’s firmware, the map extraction requires
physical access to an ECU inside of the target vehicle or firmware
hijacking through MITM attacks during an over-the-air update.
However, physical access is out of scope, as discussed in Section 3.
On the other hand, firmware hijacking through MITM attacks can
be mitigated, as discussed in Section 7. Therefore, we consider both
of them are out of scope.

The correlation between operational and authentication pack-
ets might help recover the ECU-CAN ID map. However, the un-
predictable time to send authentication packets prevents the cor-
relation. Specifically, our authentication packets have the lowest
priority than any of operational packets to minimize the potential
negative performance impact on the CAN bus (e.g., congestion on
the CAN bus). Furthermore, the CAN ID of authentication packets
is randomized, as described in Section 4.2 to send the packets with
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an unpredictable delay, preventing the temporal correlations. There-
fore, there is no strong correlation between the two types of packets
because authentication packets are sent with an unpredictable delay.
We will evaluate in Section 6 the delay of authentication packets.

5 IMPLEMENTATION
We implemented a static analysis prototype with a python script
and pypcode [2] library. Also, we implemented dynamic analysis
using GDB through STLink [52] and Black Magic Probe [1] to set
hardware breakpoints. During this dynamic analysis, we moni-
tored CAN bus based on Arduino Uno and a CAN bus shield with
a MCP2515 CAN transceiver. Inspired by detours [24], we imple-
mented our binary rewriter with python script with a BLAKE3’s C
implementation [45]. Further, we implemented the Authenticator
with python script with a BLAKE3’s python implementation [45].

6 EVALUATION
Experimental setup.We performed the backward-compatibility
and security analysis evaluations with the existing CAN packet
definition, SAE J1939 [26].

We performed the binary analysis evaluation on a set of ARM-
based open-source ECU firmware, rusEFI [49], Styreenhet [65],
and Rabbit ECU [13]. rusEFI uses TLE8888 as a CAN peripheral
device and STM32F407 as the mainboard powered by a 168MHz
32-bit ARM Cortex-M4 processor with 1 MB flash memory and 192
KB SRAM. Styreenhet uses MCP2551 as a CAN transceiver and
STM32F407 as the main board. Rabbit ECU uses SN65HVD232 as
a CAN transceiver and Arduino. SN65HVD232 is an 84MHz ARM
Cortex-M3 processor with 512 KB flash memory and 100 KB SRAM.

We evaluated our performance impact on the CAN traffic from
two different real cars (2014 Kenworth T270 and 2015 Kenworth
T660) [11], which contains over 37 million CAN packets and 186
CAN IDs. The 2014 Kenworth T270 traffic was collected during
a 4-day cross-country round trip from Colorado to Michigan and
back. The 2015 Kenworth T660 traffic was collected during driving
around an industrial block with some hard braking maneuvers.
Research questions. In this section, we present our evaluation
results, answering the following research questions:

• RQ1: How effectively does ShadowAuth prevent attacks,
maintaining backward-compatibility? (Section 6.1)?

• RQ2: How well does our binary analysis find CAN transmis-
sion functions (Section 6.2)?

• RQ3: How much performance impact on ECUs is there due
to ShadowAuth’s authentication? (Section 6.3)?

6.1 Attack Detection
Based on the related works, we classified the CAN bus attacks
into the following two categories: packet injection [16, 34, 61,
64], and bus-off attacks [7, 50]. In this section, we present how
ShadowAuth detects all these attacks using two realistic case studies.
Further, we will show the compatibility of ShadowAuth, studying
the case of J1939.

6.1.1 Case Study 1: Falsify a fuel level via an impersonation
attack.

000(2) 65276(10)

3-bit 18-bit

Priority
Control Source

8-bit

0xFA

SPN80 SPN 38...Parameter
Group Number


nn...nn(2)

8-bit

CAN ID

0xFAnn...nn(2) ...

8-bit

CAN Data

8-bit 40-bit

SPN 96

Figure 7: Attack Packet for Case Study 1

11111111(2) rrr...rrr(2)
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Priority Control Randomized Bit Message Authentication Code

CAN ID

BLAKE3(ECU_ID, counter)

CAN Data

64-bit21-bit

Figure 8: An Example of an Authentication Packet

nnn(2) 61441(10)
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Priority
Control Source

8-bit

00(2)

SPN561 SPN562 SPN1792...Parameter
Group Number


nn...nn(2)

8-bit

CAN ID

00(2)00(2) 00..00(2)

2-bit

CAN Data

2-bit 58-bit

Figure 9: Attack Packet for Case Study 2

The goal of this attack is to confuse a driver by falsifying a fuel
level. A compromised ECU consistently sends CAN packets that are
compliant with the standard protocol formats. For instance, the at-
tack packets follow the parameter group number 65276 (PGN65276),
and the suspect parameter numbers 38 and 96 (SPN38, and SPN96),
which are responsible for a fuel level in the J1939 standard [27], as
illustrated in Figure 7.

The attack packet uses a particular value, 0xFA in the SPN38 and
SPN96 fields, denoting the current fuel level as 100%. The driver
would fail to recognize the vehicle’s status and run out of gas
eventually. Note that there is no difference between falsified and
legitimate packets because the CAN and J1939 standards do not
require authentication. Hence, any packet following the standard
can be easily forged.

Nonetheless, ShadowAuth defeats this attack as follows. First,
ShadowAuth generates the list of sender ECUs of packets from the
ECU-CAN ID map and calculates expected authentication packets
from each sender using a hash of ECU ID with a counter as de-
scribed in Figure 8. When the monitor ECU receives the falsified
packet, ShadowAuth starts a timer for the authentication packet to
arrive. Since the attacker cannot forge the authentication packets,
the timer will expire eventually and ShadowAuth will report the
authentication failure.

6.1.2 Case Study 2: Deactivating ECUs via a bus-off attack.

In this case, an adversary attempts to make ECUs unavailable
using bus-off attacks [7, 50], e.g., detaching a brake controller from
a CAN bus. If this attack is successful, a driver fails to activate
brakes even if she pushes the brake pedal because her pedal cannot
send out the pedal position to the brake unit.
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The detail of the attack packet is described in Figure 9. Since the
bus-off attacks target a brake controller, the attack packet uses the
parameter group number 61441 (PGN61441) to control the brake
position. The attack packet will collide with legitimate packets from
the victim ECU, which leads the attacker and victim ECU’s towards
the error passive state. Fortunately, the victim ECU firstly turns
into the error passive state, resulting in the attacker ECU’s suc-
cessful transmission. In this step, the Authenticator detects the
bus-off attacks due to the missing authentication packets.

6.1.3 Case Study 3: CAN packet compatibility.
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Figure 10: J1939 Packet Description
We tested the compatibility of our implementation with the exist-

ing CAN network by running ShadowAuth with the SAE J1939 [26]
CAN packet definition, which is widely used for heavy-duty vehi-
cles. Figure 10 illustrates the J1939 packet and its three fields. A
suspect parameter number defines the data types, field offsets, and
lengths for certain purposes. For instance, SPN96 depicts the fuel
level through 8-bit length data starting from the second byte of
Data field. A parameter group number describes the list of SPN
types and their offsets in the Data field. For example, when the PGN
is 65276, the SPN data in the data field represents the dashboard
information, such as washer fluid, fuel level, and engine oil pressure.
Another field, priority control, prioritizes packets. The source field
claims the sender of the packet, but it may not be accurate.

Since the authentication packets use the specific CAN IDs that
J1939 packets do not use, ShadowAuth is compatible with the
J1939 standard. As shown in Figure 8, we filled the authentica-
tion packet’s prioritize field with sequential eight recessive
bits (11111111(2) ) to avoid the conflict with J1939. It is the lower
priority than the J1939’s lowest priority, PGN 65279. Further, the
rest content of the CAN ID (21-bit) is randomized as shown as
(0brrr...rrr), maintaining the compatibility and hiding from re-
play and correlation attacks, as described in Section 4.3.

6.2 Effectiveness of Firmware Analysis
In this section, we present how effective our static and dynamic
analyses are.
Static Analysis. The goal of our static analysis is to reduce the
number of function candidates for dynamic analysis by distinguish-
ing CAN transmission functions from others. Figure 11 shows the
filtering rate: 69% (rusEFI), 45% (MS3), and 69% (Styreenhet).
Dynamic analysis. In dynamic analysis, CAN bus activities are
monitored while ShadowAuth determines which functions are ac-
tively used for CAN transmission. Specifically, ShadowAuth gener-
ated hardware breakpoints on all functions candidates. We validate
the final results by checking with the source code manually. All

rusEFI ms3 Styreenhet

897

(69%)

107

(45%)
238

(69%)

405

(31%) 132

(55%)

109

(31%)

# of CAN transmission function candidates

# of filtered functions

Figure 11: Non-target functions filtered by static analysis.

CAN transmission functions are detected with 100% accuracy for all
tested platforms without ground truth study. Note that the source
code is only used for the evaluation of accuracy. Our static and
dynamic analyses do not require source code.

6.3 Runtime Overhead

Figure 12: CDF of Operational Packet Transmission

To understand the runtime overhead introduced by ShadowAuth,
we measured its impact on the CAN bus traffic and overhead of
HMAC generation.
Impact on the CAN bus traffic. Since the authentication packets
have lower priority than operational packets, the CAN bus con-
veys authentication packets when there is no on-going operational
packet on the CAN bus. Hence, we measured how much time ECUs
should wait before sending authentication packets. As shown in
Figure 12, 43% of 2014 Kenworth T270 and 2015 Kenworth T660’s
authentication packets did not wait, meaning that the bus was al-
ready empty and ECUs can send authentication packets right after
operational packets. Moreover, all authentication packets are sent in
14.0ms, far below the theoretic worst 60ms described in Section 4.2.
Overload of HMAC. We measured the CPU time and the code
size of HMAC generator. Our results show that our HMAC gener-
ator incurs 4𝜇𝑠 of execution, which is negligible compared to the
minimum value of real ECU’s transmission period, 1.5𝑚𝑠 [50]. The
code size increased by 212KB which is feasible for the commercial
ECU’s flash memory, e.g., TC1767, 2MB. 86% (182KB out of 212KB)
of the space overhead is taken by the BLAKE3’s algorithm, which
varies by implementations. To further reduce the code size, we can
alternatively choose other hashing algorithms such as SHA2, SHA3,
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IDS Trusted Base False Positive (%) False Negative (%)

CIDS [8] Clock skew 0.055 0
VIDEN [9] Voltage level 0.2 0.2
EASI [33] Voltage edge 0 0.03

Table 3: Attack Detection Comparison with IDSs

and RIPEMD-160. For instance, RIPEMD-160 can take only 14KB
which is less than 1%.

7 DISCUSSION
Rewriting ECU firmware of real-world ECUs. Rewriting real-
world ECUs’ firmware could be illegal in some countries, e.g., the
United States [54, 55]. For this consideration, we conducted our
experiment using open-source ECUs and validated our evaluation
using the ground truth. For real-world use cases, we target the real
automotive vendors, which should not have such administrative
challenges. If secure boot is used to guarantee the ECU firmware
integrity, we expect a re-signing process after the binary instru-
mentation from the vendor directly.
Burst traffic consideration for CAN bus. Most in-vehicle CAN
bus traffic is periodic [9], and there is no traffic burst on the CAN
bus. While ShadowAuth introduces additional packets due to au-
thentication, they typically spread out along the traffic. By sending
short random delays (e.g., a few ms) before sending authentication
packets, ShadowAuth can diversify the traffic load. Based on our
experiments, in practice, it is a rare to have traffic with any conges-
tion. It is possible to sense the traffic load of the bus before sending
out authentication packets to avoid the rare traffic bursts.
ECU firmware extraction during updates. A firmware update
accesses its rawmemory content. Therefore, extracting the firmware,
including any keys during an update, is possible. Existing firmware
update protection techniques [20, 23, 37, 38, 40, 42] can be used to
mitigate this attack and complement ShadowAuth.

8 RELATEDWORK
Packet authentication. There have been multiple prior works
to address the missing authentication of CAN buses and ECUs
[4, 14, 18, 21, 22, 30, 36, 41, 43, 47, 56–58]. Several approaches [4,
18, 21, 22, 36, 41, 57, 58] require significant manual effort to modify
packet definitions and standards, which does not overcome C1.
Specifically, they use a portion of the Data field for HMAC, which
is already reserved for other purposes, as presented in Section
4. Thus, those methods impose high costs due to their backward
incompatibility.

Another group of approaches [4, 14, 21, 22, 30, 41, 43, 46, 47, 56,
58] delays CAN packets delivery. As discussed in C2, if there is
an excessive acceptance delay, the vehicle operations cannot be
properly controlled and may lead to accidents. Those approaches
did not evaluate the influence of such a long acceptance delay to the
vehicle control, despite their use of costly cryptographic functions
such as Elliptic-Curve [14]. In particular, ShadowAuth has a broader
attack coverage than S2-CAN [46], covering remote attacks.
Intrusion detection system. Existing CAN intrusion detection
systems (IDS) [8, 9, 33] have evolved to detect attacks by utilizing
the physical characteristics of CAN packets, such as clock skews,

voltage levels, and voltage edges. Their advantages include fast de-
tection time and easy deployment by attaching additional hardware
to the existing CAN bus. However, these side-channel-based ap-
proaches cannot guarantee 100% of accuracy, leading to inevitable
false positives or false negatives, as shown in Table 3. Compared to
such approaches, ShadowAuth achieves the authentication of CAN
packets, guaranteeing attack detection.
Binary rewriter. There have been a large number of rewriter ap-
proaches introduced for multiple computer architectures such as
x86 [3, 12, 24, 59, 60, 63] and ARM [19, 31, 51]. ShadowAuth used
the detour-based binary rewriting approach [24, 51] because other
approaches [3, 19, 31, 59, 60, 63] are relatively unstable compared
to the detour-based approaches. For instance, binaries compiled
from the C++ language contain multiple sections to store meta-
information [59]. Hence, supporting C++ binary rewriting is an
unsolved problem for non-detour-based approaches. ShadowAuth’s
design also avoids certain corner cases such as PC-relative jumps
to make a proper patch, as mentioned in the previous work [31].

9 CONCLUSION
We propose ShadowAuth, a backward-compatible authentication
scheme based on HMAC and automated binary rewriting. By using
asynchronous authentication packets, ShadowAuth provides mes-
sage authentication in the existing legacy CANbuswithout violating
the current CAN packet definitions and protocols. Moreover, Shad-
owAuth automatically implants this authentication scheme into the
legacy firmware by accurately discovering CAN packet transmis-
sion functions and utilizing a trampoline-based binary rewriting
mechanism. ShadowAuth achieves CAN packet authentication in
60ms after a packet arrival without source code dependency and
packet acceptance latency.
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